

GOVERNMENT OF ANDHRA PRADESH COMMISSIONERATE OF COLLEGIATE EDUCATION

THE PERPENDICULAR DISTANCE FROM A POINT TO THE PLANE

MATHEMATICS

K.SAMRAJYAM,

M.Sc, B.Ed, M.Phil

P.R.GOVT.COLLEGE(A):KAKINADA

Email ID:tptswamy82@gmail.com

THE PERPENDICULAR DISTANCE FROM A POINT TO THE PLANE

THEOREM: The perpendicular distance from a point A (x_1, y_1, z_1) to the **plane ax +by +cz + d = 0** i.e the length of the perpendicular from a point A (x_1, y_1, z_1) to the plane ax +by +cz + d = 0 is $\left|\frac{ax_1+by_1+cz_1+d}{\sqrt{a^2+b^2+c^2}}\right|$

PROOF: Let the equation of the plane be $\Pi = ax + by + cz + d = 0$ (1) Let $A = A(x_1, y_1, z_1)$ be the point ($A \notin \Pi$) from which the perpendicular drawn to the plane Π meets it in C.

Let the normal form of plane Π be lx +my + nz = p..... (2) The equation of the plane parallel to eq (2) and passing through the point A be lx+my+nz= p_1 ... (3) when $lx_1+my_1+nz_1=p_1$ (4)

Problems:

1. Find the perpendicular distance from the point (1,-2,8) to the plane 2x-3y+6z=63.

Solution: Given plane is
$$2x-3y+6z-63=0$$

Here $a = 2, b = -3, c = 6 d = -63$
Given point A $(1,-2,8) = A(x_1, y_1, z_1)$

The perpendicular distance from a point A (x_1, y_1, z_1) to the plane ax +by +cz +d = 0 is $\left|\frac{ax_1+by_1+cz_1+d}{\sqrt{a^2+b^2+c^2}}\right|$

The perpendicular distance from the point A(1,-2,8) to the plane 2x-3y+6z=63

$$= \left| \frac{2(1) - 3(-2) + 6(8) - 63}{\sqrt{(2^2) + (-3^2) + (6^2)}} \right|$$

$$= \left| \frac{2+6+48-63}{\sqrt{4+9+36}} \right|$$

$$= \left| \frac{7}{\sqrt{49}} \right|$$

$$= \left| \frac{7}{7} \right|$$

- **=** 1 unit
- ... The perpendicular distance from A(1,-2,8) to the plane 2x-3y+6z=63 is 1 unit.

2. Find the perpendicular distance from the point (3,-4,1) to the plane x+y-z+7=0.

Solution: Given plane is x+y-z+7=0: Here a = 1,b = 1,c = -1,d=7Given point $A(3,-4,1) = A(x_1,y_1,z_1)$

The perpendicular distance from a point A (x_1, y_1, z_1) to the plane

$$ax + by + cz + d = 0$$
 is $\left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$

The perpendicular distance from the point A(3,-4,1) to the plane x+y-z+7=0

$$= \left| \frac{1(3)+1(-4)-1(1)+7}{\sqrt{1^2+1^2+(-1)^2}} \right|$$

$$= \left| \frac{3-4-1+7}{\sqrt{1+1+1}} \right|$$

$$= \left| \frac{5}{\sqrt{3}} \right| \text{ units}$$

... The perpendicular distance from the point A(3,-4,1) to the plane x+y-z+7=0 is

NOTE: The perpendicular distance from the origin to the plane ax +by +cz +d = 0 is $\frac{|a|}{\sqrt{a^2+b^2+c^2}}$ Problem: Find the perpendicular distance from the origin to the plane 3x+4y-12z+65=0.

Solution: Given plane is 3x+4y-12z+65=0. Here a=3,b=4,c=-12,d=65

Given point is origin =(0,0,0)

The perpendicular distance from the origin to the plane ax +by +cz + d = 0 is $\frac{|d|}{\sqrt{a^2+b^2+c^2}}$

$$= \frac{|65|}{\sqrt{(3)^2 + (4)^2 + (-12)^2}}$$

$$= \frac{|65|}{\sqrt{9 + 16 + 144}}$$

$$= \frac{|65|}{\sqrt{169}}$$

$$= \frac{65}{13} = 5 \text{ units}$$

The perpendicular distance from the origin to the plane 3x+4y-12z+65=0 is 5units.

DISTANCE BETWEEN THE PARALLEL PLANES:

THEOREM: The distance between the parallel planes ax + by +cz + d_1 =0, ax +by +cz + d_2 =0 is $\frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$

PROOF: The equation to the planes are ax +by +cz + $d_1 = 0$,

And $ax + by + cz + d_2 = 0..(1)$

The dc's of the normal to the planes are $(\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}})$

Now p_1 and p_2 be the perpendicular distances to the planes from origin

$$\Rightarrow p_1 = \frac{-d_1}{\sqrt{a^2 + b^2 + c^2}} , p_2 = \frac{-d_2}{\sqrt{a^2 + b^2 + c^2}}$$

 \Rightarrow The distance between the parallel planes = $|p_1 - p_2|$

$$= \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

... The distance between the parallel planes is $\frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$ Hence the theorem.

PROBLEMS:

1.Find the distance between the parallel planes 12x-3y+4z-7=0 and 12x-3y+4z+6=0 **SOLUTION**:

The given planes are planes
$$12x-3y+4z-7=0$$
 and $12x-3y+4z+6=0$
Here $a=12,b=-3,c=4$ and $d_1=-7,d_2=6$
The distance between the parallel planes is $\frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$
The distance between the given planes $=\frac{|-7-6|}{\sqrt{12^2+(-3)^2+4^2}}$
 $=\frac{13}{\sqrt{169}}$
 $=\frac{13}{13}$
 $=1$ unit

:. The distance between the parallel planes is 1 unit

2.Prove that the distance between the parallel planes 2x-2y+z+3=0 and 4x-4y+2z+5=0 is 1/6 SOLUTION:

The given planes are
$$2x-2y+z+3=0$$
 and $4x-4y+2z+5=0$

$$=>2x-2y+z+\frac{5}{2}=0$$
Here $a=2,b=-2,c=1$ and $d_1=3,d_2=\frac{5}{2}$
The distance between the parallel planes $=\frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$

$$=\frac{|3-\frac{5}{2}|}{\sqrt{2^2+-2^2+1^2}}$$

$$=\frac{|\frac{6-5}{2}|}{\sqrt{4+4+1}}$$

$$=\frac{\frac{1}{2}}{\sqrt{9}}$$

$$=\frac{1}{6}units$$

:. The distance between the parallel planes is 1/6 units

Prescribed Text Book:

Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, published by S. Chand & Company Ltd. 7th Edition.

Reference Books:

- **1.**A text book of Mathematics for BA/B.Sc Vol 1, by V Krishna Murthy & Others, published by S. Chand & Company, New Delhi.
- 2.A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel Ahmed, published by Wiley Eastern Ltd., 1999.
- 3.Co-ordinate Geometry of two and three dimensions by P. Balasubrahmanyam, K.Y. Subrahmanyam,
- 4.G.R. Venkataraman published by Tata-MC Gran-Hill Publishers Company Ltd., New Delhi.